
Predictability, bred vectors, and generation of ensembles in space-time chaotic systems

Cristina Primo, Miguel A. Rodríguez, Juan M. López, and Ivan Szendro*
Instituto de Fisica de Cantabria, Avenida los Castros, 39008 Santander, Spain

�Received 9 August 2004; published 18 July 2005�

Spatial configuration of initial errors strongly affects predictability of space-time chaotic systems. The
predictability of numerical models can be adjusted by using prepared ensembles of initial conditions. We
present a natural way of preparing ensembles based in using finite-amplitude perturbations with varying
correlation. This allows one to take into account the underlying dynamics to generate initial perturbations with
spatial correlations varying from fully correlated �bred vectors� to random fluctuations.
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Early predictability questions were formulated in the field
of weather forecasting by Lorenz �1�, giving rise to the re-
naissance of the science of chaos. The Lorenz model is a
simple representation of atmospheric evolution that exhibits
low-dimensional chaos. It is well known that prediction time
of low-dimensional chaotic systems can be estimated as the
inverse of the Lyapunov exponent �with a logarithmic cor-
rection due to the strength of initial errors�. Realistic models
of atmospheric evolution used in current weather forecasts
are spatiotemporal chaotic systems that introduce other in-
gredients �2�. Important changes concerning predictability
can appear from the fact that here errors propagate in space
�3�. This process occurs slowly and produces correlated and
localized perturbations. Changes in the way we deal with
predictable tasks in extended chaotic systems are necessary
�4�. Logarithmic sensitivity to initial conditions might not
describe predictability if these functions are correlated.

Modern forecasters have realized that prediction now re-
quires the use of ensembles of forecasts, instead of single
deterministic ones �5�. A model is predictive when the actual
experimental trajectory evolves like a member of the en-
semble and the range of prediction coincides with the satu-
ration time of ensemble fluctuations. The crucial point is
that, with the same initial variance, the growth of initial fluc-
tuations depends on the spatial form of ensembles. This fact
allows one to prepare conveniently ensembles of initial con-
ditions. But calibration of ensembles in a given model is
usually a phenomenological task. The use of complicated
models does not allow systematic analysis and little is known
about implications of spatial chaos on predictability. Our
point of view in this paper is totally different. We deal with
simple models of space chaos trying to extract general results
valid for other systems. The methods used in weather fore-
casting will be the guide in this study: We try to explain
some results obtained phenomenologically in this field and
suggest different methods that emerge from our analysis. In a
perfect model case finite fluctuations evolve as true errors;
they become progressively correlated during evolution close
to the tangent space and uncorrelated when arriving to a
given amplitude error, farther from the tangent space �6�. The
use of these correlated fluctuations as ensembles of initial

conditions can lead to a systematic method of calibration,
since the saturation time of fluctuations strongly depends on
initial correlation. In weather forecasting, totally correlated
finite fluctuations are widely used as initial conditions. They
are called bred vectors �BVs�. BVs are stationary finite fluc-
tuations that are periodically renormalized to prevent expo-
nential growth. They were used for operative forecasting in
the National Center for Environmental Prediction �NCEP�
�7,8�. Their use has several advantages. On the one hand,
they provide a certain kinetic memory of the spatial distribu-
tion of errors. On the other, they can be computed from the
original nonlinear model without the corresponding linear-
ized counterpart. Therefore, breeding techniques constitute
an important tool in modern weather forecasting, both for
operative uses �9� and for research �10�. But important ques-
tions concerning statistical and dynamical properties of BVs
in space-time chaotic systems are still unanswered and some
of them are of practical interest. Standard BVs are totally
correlated finite fluctuations, and when used as initial condi-
tions they have too long a saturation time. This is a weakness
of the method that limits its application to cases with small
model errors. In fact several artifices, either adding noise
externally, manipulating amplitudes �11�, or orthogonalizing
�12� vectors are used to achieve more uncorrelated BVs. In
this paper we show how to obtain stationary finite fluctua-
tions with controlled correlation using an alternate breeding
method. We assume the hypothesis of the perfect model with
homogeneous errors, focusing our research on the prediction
of global variables.

Our results are based on numerical simulations of coupled
map lattices in one dimension. They are simple model sys-
tems exhibiting space-time chaos. We consider a diffusively
coupled map array of L chaotic oscillators with dynamics
given by

u�x,t + 1� = �f„u�x + 1,t�… + �f„u�x − 1,t�…

+ �1 − 2��f„u�x,t�… , �1�

where x=1,2 , . . . ,L, f�u� is a chaotic map, � is the coupling
constant, and periodic boundary conditions are imposed. The
coupling parameter has been fixed at �=1/3 in all the simu-
lations presented in this paper. We have carried out simula-
tions for several choices of the map, in one and two dimen-
sions and also for other chaotic oscillators, as, for instance,*Electronic address: rodrigma@ifca.unican.es
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the Lorenz one, obtaining the same general results. For the
sake of brevity, all the simulations we present below corre-
spond to the coupled logistic maps, f�u�=4u�1−u�, 0�u
�1. Perturbations are obtained by considering the evolution
of trajectories whose initial conditions are close to a refer-
ence �or control� trajectory. This reference trajectory is the
solution u0�x , t� of Eq. �1� with an initial condition u0�x ,0�.
Under the perfect model approximation the control trajectory
represents the experimental evolution. An ensemble of finite
perturbations ��u�x , t�� is obtained by taking the difference
�u�x , t�=u�x , t�−u0�x , t� between the control trajectory and
every one of the disturbed solutions. These are generated by
iterating �1� for an ensemble of initial conditions u�x ,0�
=u0�x ,0�+�u�x ,0�. Since we are interested in the propaga-
tion of real finite errors, linearization of �1� has been
avoided. Moreover, to improve the statistical characterization
of global variables averages over both, initial conditions and
different control trajectories are performed.

Logarithmic-normal infinitesimal fluctuations. For the sta-
tistical characterization of infinitesimal fluctuations, it is con-
venient to use a picture presented by Pikovsky and Politi
�13�. There it is shown that the logarithmic transformation of
infinitesimal fluctuations l�u�x , t�=ln���u�x , t��� evolves as a
rough interface in the Kardar-Parisi-Zhang �KPZ� universal-
ity class, with well-known statistics and scaling laws. The
statistics of KPZ rough interfaces is known to be Gaussian in
the stationary state. This suggests that infinitesimal errors,
taken as absolute values of fluctuations, converge to
logarithmic-normal distributions. The logarithmic-normal
character of error growth has already been shown in low-
dimensional chaotic systems �14�. The same behavior is ex-
pected in extended systems since it is simply an effect of the
exponential growth. Standard methods of analysis, better
adapted to deal with Gaussian processes, could be not longer
suitable. In fact, the logarithmic-normal distribution is char-
acterized by the mean and variance of the logarithmic trans-
formation, which suggests the use of geometrical means in
the field of fluctuations. So we use the amplitude of fluctua-
tions defined by ��u�t�=exp��l�u�x , t�	� and the width of the
interface w�u�t�= ��l�u�x , t�− �l�u	�2	1/2 for a proper character-
ization of fluctuations. The overbar stands for spatial mean
while �¯	 means the ensemble average. Arithmetical means
in the logarithmic transformed field l�u translate into geo-
metrical ones in the field of fluctuations �u.

Saturation time. The behavior of finite-size fluctuations in
terms of these magnitudes has been studied by us in �6�. We
have shown that the amplitude grows exponentially in time
��u�t�
��u�0�exp��t�, until the saturation that occurs, inde-
pendently of initial conditions, when reaching a given thresh-
old �nl, ��u�ts�
�nl. �, as shown in �6� and �13�, is simulta-
neously the interface velocity and the leading Liapunov
exponent. Saturation of the amplitude occurs at ts

�1/��ln��nl /��u�0��, simultaneously when fluctuations be-
come uncorrelated. This saturation time is used in forecast-
ing as a first index to calibrate ensembles and as a measure of
the range of predictability �2�. In a perfect model case, and
with well-defined initial errors, this is the prediction time.

Correlations. Finite fluctuations become progressively
correlated while evolving as infinitesimal fluctuations close

to the tangent space �6�. Correlation lengths can then be used
as a measure of the memory of the underlying dynamics
carried by fluctuations. But correlation lengths are not easily
computed in the field of fluctuations. In general these diffi-
culties are present in the calculation of every other quantity
of a logarithmic-normal distribution and can be avoided by
using the logarithmic-transformed field. Here it is possible to
use the dynamical roughening picture in which the correla-
tion length is straightforwardly defined and evolves as a
power law lc�t�
 t1/z with universal exponents �z= 3

2 in the
KPZ class�. Invoking again this scaling, we can measure cor-
relation lengths by means of the already defined width w
since both are related by w
 lc

�, � being the roughness ex-
ponent �1/2 in the KPZ class�. In this way correlation and
the memory of dynamics can be easily quantified by the size
of w.

Why Bred Vectors? BVs have been used as well-adapted
ensembles of initial conditions. It has been explained by a
phenomenological argument saying that they carry some of
the underlying dynamics, and errors are spatially distributed
according to this dynamics. More precise arguments can ex-
plain these facts by simply assuming the logarithmic charac-
ter of BVs. For fluctuations �u�x , t� and their logarithmic
transformation l�u�x , t� one has for the variance ��u

2 = ��u2	
=��u

2 exp�2��u
2 �, where ��u is defined in terms of cumulants

��l�u		 as ��u
2 =�r=2

	 2r−1���l�u		 /r!� �6�. In the case of
logarithmic-normal distributions, cumulants of order greater
than 2 vanish and ��u becomes the width w�u, so we can
consider ��u as a generalized width that also accounts for
correlation. Hence one obtains the interesting relationship

��u = ��u exp���u
2 � , �2�

relating errors �typical deviation� with amplitudes and corre-
lations. It states that for the same level of error ��u one has
fluctuations that are more or less correlated depending on the
amplitude. Hence, a more correlated initial condition will
have lower initial amplitude and therefore a longer range of
predictability,

ts 

1

�
ln���u�ts�

���0�  +
��u�0�2 − ��u�ts�2

�
.

The first contribution in this equation would correspond to
the prediction time obtained with Gaussian random initial
conditions, whereas the second one is the gain by correlation.
Since breeding produces correlation, this is the gain due to
breeding. Note that the maximum gain in prediction time due
to breeding is proportional to the system size L :max��2


w2�
L2� ��=1/2 in KPZ class� and ��u�ts�=0.302 068 for
Gaussian final errors. In this case predictability is governed
by the diffusion of errors originated deterministically. Note
that an extended chaotic system has a chaos dimension pro-
portional to L. Then, paradoxically, the more chaotic a sys-
tem is, the more predictable it becomes. On the other hand, it
now becomes clear that both parameters, deviation of errors,
and correlations are independent and necessary to fit cor-
rectly dynamically compatible initial conditions. Let us focus
now on this point.

Bred vectors with constant norm. Bred vectors were de-
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fined in analogy with the operation of data reassimilation in
numerical models of atmospheric evolution. The output of
the numerical model is corrected by the observed experimen-
tal data in short periods of time �
1 ,
2 ,
3 , . . . , �. Instead of
assimilation of data, bred vectors are defined by multiplying
each member of the ensemble by a reduction factor
�k1 ,k2 ,k3 , . . . � maintaining perturbations with a constant
size. In essence this is a generalization of the method used to
obtain the leading Liapunov vector in low-dimensional cha-
otic systems adapted to numerical weather models. Rescaling
of the norm prevents the exponential growth that allows one
to evolve fluctuations for long times without numerical er-
rors. Standard methods used in operative forecasts take uni-
form intervals of time �
 normalizing to a size defined by
some norm. Here we take �0=�u21/2 as norm. The ensemble
of bred vectors are then defined by these two parameters �

and �0. We have reproduced this methodology with our
model Eq. �1� taking an ensemble of finite perturbations
around a reference trajectory, as pointed out above. Now
BVs are constructed by normalizing each evolved perturba-
tion ��ui�x , t�� at intervals 
i=
i−1+�
 adjusting the norm in
each step to �0

�N�x,
i� = �0
�ui−1�x,
i�

��ui−1�x,
i�2�1/2 . �3�

The evolution of finite perturbations ��ui�x , t�� within
each interval �
i ,
i+1� is obtained by taking the difference
�ui�x , t�=ui�x , t�−u0�x , t� between the reference trajectory
and every one of the perturbed solutions whose initial con-
dition at time 
i−1 is ui�x ,
i−1�=�N�x ,
i−1�+u0�x ,
i−1�. We
have two varying parameters �0 and �
 to generate BVs but
only �0 is actually relevant. In fact, �
 only changes the
magnitude of the reduction factor as k
exp���
�, and here
is fixed to one. The definitions used in fluctuations,
l�u ,w�u. . ., are generalized to BVs, l�N ,w�N. . ., simply by
taking �N instead of �u. In Fig. 1�a� we plot the probability
density of the logarithmic transformed bred vectors, P�l�N ,
�
at different times. We observe that fluctuations generated
during this breeding evolve with a width increasing as in
common �not bred� fluctuations w�N�t�
 t� �6�, but with an

amplitude constrained by �0= ��N2	1/2=��N exp���N
2 �. So, as

time goes by the mean value of the plotted distribution,
which is the logarithmic amplitude ln ��N, shifts to lower
values. We plot the trajectory of this evolution in coordinates
��N vs ln ��N in Fig. 2. It is perfectly fitted by ��N= �ln �0

−ln ��N�1/2 �dotted red lines� in agreement with our theory.
On the other hand we can see clearly in Fig. 2 why fluctua-
tions remain in the tangent space while breeding. As we have
already mentioned, fluctuations leave the tangent space when
the amplitudes cross a given threshold, plotted in a dashed
black line in Fig. 2. If this threshold is not crossed at the
initial time it is never crossed during the evolution, since
amplitudes shift to lower values. Then BVs become totally
correlated when the correlation length equals the size of the
system and saturate for w�N
wL �dotted black line in Fig.
2�. By varying the parameter of breeding �0 all we can ob-
tain with this method is a change in the amplitude of BVs but
not in correlations. This is what can be seen in Fig. 1�c�. We
show in this figure the stationary probability density of the
logarithmic transformed BVs for several values of �0. Also
in Fig. 2 we can see how BVs are always totally correlated as
if they were Liapunov vectors �infinitesimal fluctuations�. It
is clear that these kinds of BVs are insufficient to represent
properly initial conditions in real situations where models
errors are present and less correlated initial conditions could
be needed.

Bred vectors with constant amplitude. Observing Fig. 2
one could have easily thought of a breeding method for gen-
erating noninfinitesimal fluctuations. It suffices to avoid the
shift of amplitude, for instance, by keeping it constant. So,
instead of a typical deviation or any other arithmetical mean
of fluctuations we take amplitudes for the definition of size
in the breeding process. The new BVs are then identically
generated but now the reduction factor is proportional to the
amplitude �0,

�A�x,
i� = �0
�ui−1�x,
i�

�x
���ui−1�x,
i���1/L

, �4�

and the initial condition of finite perturbations ��ui�x , t�� for
each breeding time interval is ui�x ,
i−1�=�A�x ,
i−1�
+u0�x ,
i−1�. Then we get the evolution given in Fig. 1�b�,

FIG. 1. �Color online� Probability density of the logarithmic
transformed BVs. Upper panels: Plotted at time 2n�n=1,2 , . . . ,11�,
�a� with constant norm �0=10−6 and �b� with constant amplitude
�0=10−6. Lower panels: At the stationary state with constant norm,
�c� ��0=10−3 ,10−4 , . . . ,10−8� and constant amplitude, �d� ��0

=10−3 ,10−4 , . . . ,10−8�

FIG. 2. �Color online� Generalized width � vs logarithmic am-
plitude during breeding: With constant norm �curved lines� and con-
stant amplitude �vertical lines�. Symbols represent states plotted in
Fig. 1. Nonlinear threshold is depicted by a dashed line and system
size saturation width with a dotted one.
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where obviously the mean value of the distribution remains
constant with a value ln �0, and the width of the probability
density grows, as before, until saturation. In Fig. 1�d� we
present the stationary density with varying amplitudes. For
large enough amplitudes, saturation appears when leaving
the tangent space, when the maximum fluctuation crosses the
nonlinearity threshold �dashed black line� as shown in Fig. 2.
So, the final result of the method is to provide bred vectors
with different degrees of correlation. We have now true finite
fluctuations with controlled correlation. The ability of the
breeding method to generate dynamically compatible en-
sembles seems to be now strongly enhanced.

Conclusions. In spatiotemporal chaotic systems predict-
ability strongly depends on the spatial correlation of initial
conditions. Correlated ensembles have more localized errors,
which implies a longer prediction time of global variables.
The prediction range of numerical models can then be ad-

justed. This can be done naturally by using finite fluctuations
controlled by the appropriate breeding process. Nonlinear ef-
fects, which are present in finite fluctuations, act only when
bred vectors are normalized by amplitudes. In the standard
method, using norms, these effects are irrelevant. Nonlinear
effects act introducing a threshold for fluctuations, which
produces saturation of the growth, leading to partially corre-
lated fluctuations. By varying the amplitude of breeding we
can obtain a variation of this scale of correlation to any pos-
sible extent. Hence a method to obtain ensembles with vary-
ing amplitude and correlation by means of breeding tech-
niques is now feasible. The correlations are generated by the
model itself without necessity of external mechanisms. This
must be of great interest in applications to predictive meth-
ods, such as weather forecasting, since it allows the calibra-
tion of any initial condition as a true finite fluctuation.
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